
Authentication With 
Laravel 4 
Authentication is required for virtually any type of web application. In this tutorial, I'd like 

to show you how you can go about creating a small authentication application 

using Laravel 4. We'll start from the very beginning by creating our Laravel app using 

composer, creating the database, loading in the Twitter Bootstrap, creating a main 

layout, registering users, logging in and out, and protecting routes using filters. We've 

got a lot of code to cover, so let's get started! 

Installation 

Let's start off this tutorial by setting up everything that we'll need in order to build our 

authentication application. We'll first need to download and install Laravel plus all of its 

dependencies. We'll also utilize the popular Twitter Bootstrap to make our app look 

pretty. Then we'll do a tad bit of configuration, connect to our database and create the 

required table and finally, start up our server to make sure everything is working as 

expected. 

Download 

Let's use composer to create a new Laravel application. I'll first change directories into 

my Sites  folder as that's where I prefer to store all of my apps: 

1 cd Sites 

Then run the following command to download and install Laravel (I named my 

app laravel-auth ) and all of its dependencies: 

1 composer create-project laravel/laravel laravel-auth 

http://laravel.com/


Add In Twitter Bootstrap 

Now to keep our app from suffering a horrible and ugly fate of being styled by yours 

truly, we'll include the Twitter bootstrap within our composer.json  file: 

{ 

 "name": "laravel/laravel", 

 "description": "The Laravel Framework.", 

 "keywords": ["framework", "laravel"], 

 "require": { 

  "laravel/framework": "4.0.*", 

  "twitter/bootstrap": "*" 

 }, 

 

 // The rest of your composer.json file below .... 

... and then we can install it: 

1 composer update 

Now if you open up your app into your text editor, I'm using Sublime, and if you look in 

the vendor  folder you'll see we have the Twitter Bootstrap here. 



 
 

Now by default our Twitter Bootstrap is composed of .less  files and before we can 

compile them into .CSS  files, we need to install all of the bootstrap dependencies. This 

will also allow us to use the Makefile  that is included with the Twitter bootstrap for 

working with the framework (such as compiling files and running tests). 

Note: You will need npm in order to install these dependencies. 

In your terminal, let's change directories into vendor/twitter/bootstrap  and run npm  

install : 

https://npmjs.org/


1 

2 

cd ~/Sites/laravel-auth/vendor/twitter/bootstrap 

npm install 

With everything ready to go, we can now use the Makefile  to compile the .less files 

into CSS. Let's run the following command: 

1 make bootstrap-css 

You should now notice that we have two new folders inside 

our vendor/twitter/bootstrap  directory named bootstrap/css  which contain our 

bootstrap CSS files. 



 
 

Now we can use the bootstrap CSS files later on, in our layout, to style our app. 



But, we have a problem! We need these CSS files to be publicly accessible, currently 

they are located in our vendor  folder. But this is an easy fix! We can use artisan 

to publish  (move) them to our public/packages  folder, that way we can link in the 

required CSS files into our main layout template, which we'll create later on. 

First, we'll change back into the root of our Laravel application and then run artisan to 

move the files: 

1 

2 

cd ~/Sites/laravel-auth 

php artisan asset:publish --path="vendor/twitter/bootstrap/bootstrap/css"  

bootstrap/css 

The artisan command asset:publish  allows us to provide a --path  option for which 

files we want to move into our public/packages  directory. In this case, we tell it to 

publish all of the CSS files that we compiled earlier and place them inside of two new 

folders named bootstrap/css . Your public  directory should now look like the 

screenshot below, with our Twitter Bootstrap CSS files now publicly accessible: 



 
 

Set Permissions 

Next we need to ensure our web server has the appropriate permissions to write to our 

applications app/storage  directory. From within your app, run the following command: 

1 chmod -R 755 app/storage 



Connect To Our Database 

Next, we need a database that our authentication app can use to store our users in. So 

fire up whichever database you are more comfortable using, personally, I prefer MySQL 

along with PHPMyAdmin. I've created a new, empty database named: laravel-auth . 

 
 

Now let's connect this database to our application. Under app/config  open 

up database.php . Enter in your appropriate database credentials, mine are as follows: 

01 

02 

03 

04 

05 

06 

// Default Database Connection Name 

  

'default' => 'mysql', 

  

// Database Connections 

  



07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

    'connections' => array( 

  

        'mysql' => array( 

            'driver'    => 'mysql', 

            'host'      => '127.0.0.1', 

            'database'  => 'laravel-auth', 

            'username'  => 'root', 

            'password'  => '', 

            'charset'   => 'utf8', 

            'collation' => 'utf8_unicode_ci', 

            'prefix'    => '', 

        ), 

  

        // the rest of your database.php file's code ... 

Create the Users Table 

With our database created, it won't be very useful unless we have a table to store our 

users in. Let's use artisan to create a new migration file named: create-users-table : 

1 php artisan migrate:make create-users-table 

Let's now edit our newly created migration file to create our users table using 

theSchema Builder. We'll start with the up()  method: 

1 

2 

3 

4 

5 

6 

public function up() 

{ 

    $table->increments('id'); 

    $table->string('firstname', 20); 

    $table->string('lastname', 20); 

    $table->string('email', 100)->unique(); 

    $table->string('password', 64); 

http://four.laravel.com/docs/schema


7 

8 

9 

    $table->timestamps(); 

} 

This will create a table named users  and it will have an id  field as the primary 

key, firstname  and lastname  fields, an email  field which requires the email to be 

unique, and finally a field for the password  (must be at least 64 characters in length) as 

well as a few timestamps . 

Now we need to fill in the down()  method in case we need to revert our migration, to 

drop the users  table: 

1 

2 

3 

4 

public function down() 

{ 

    Schema::drop('users'); 

} 

And now we can run the migration to create our users  table: 

1 php artisan migrate 

Start Server & Test It Out 

Alright, our authentication application is coming along nicely. We've done quite a bit of 

preparation, let's start up our server and preview our app in the browser: 

1 php artisan serve 

Great, the server starts up and we can see our home page: 



 
 

Making the App Look Pretty 

Before we go any further, it's time to create a main layout fi le, which will use the Twitter 

Bootstrap to give our authentication application a little style! 

Creating a Main Layout File 

Under app/views/  create a new folder named layouts  and inside it, create a new 

file named main.blade.php  and let's place in the following basic HTML structure: 

01 

02 

03 

<!DOCTYPE html> 

<html lang="en"> 

  <head> 



04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

    <meta charset="utf-8"> 

    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

  

    <title>Authentication App With Laravel 4</title> 

  </head> 

  

  <body> 

  

  </body> 

</html> 

Linking In the CSS Files 

Next, we need to link in our bootstrap CSS file as well as our own main  CSS file, in 

our head  tag, right below our title : 

1 

2 

3 

4 

5 

6 

7 

8 

<head> 

    <meta charset="utf-8"> 

    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

  

    <title>Authentication App With Laravel 4</title> 

    {{ HTML::style('packages/bootstrap/css/bootstrap.min.css') }} 

    {{ HTML::style('css/main.css')}} 

</head> 

Now we just need to create this main.css  file where we can add our own customized 

styling for our app. Under the public  directory create a new folder named css  and 

within it create a new file named main.css . 



 
 

Finishing the Main Layout 

Inside of our body  tag, let's create a small navigation menu with a few links for 

registering and logging in to our application: 

01 

02 

03 

04 

05 

06 

<body> 

  

    <div class="navbar navbar-fixed-top"> 

        <div class="navbar-inner"> 

            <div class="container"> 

                <ul class="nav">   

                    <li>{{ HTML::link('users/register', 'Register') }}</li>    



07 

08 

09 

10 

11 

12 

13 

14 

                    <li>{{ HTML::link('users/login', 'Login') }}</li>    

                </ul>   

            </div> 

        </div> 

    </div>  

  

</body> 

Notice the use of several Bootstrap classes in order to style the navbar appropriately. 

Here we're just using a couple of DIVs to wrap an unordered list of navigation links, 

pretty simple. 

For our application, we're going to want to give our users simple flash messages, like a 

success message when the user registers. We'll set this flash message from within our 

controller, but we'll echo out the message's value here in our layout. So let's create 

another div  with a class of .container  and display any available flash messages 

right after our navbar: 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

<body> 

  

    <div class="navbar navbar-fixed-top"> 

        <div class="navbar-inner"> 

            <div class="container"> 

                <ul class="nav">   

                    <li>{{ HTML::link('users/register', 'Register') }}</li>    

                    <li>{{ HTML::link('users/login', 'Login') }}</li>    

                </ul>   

            </div> 

        </div> 

    </div>  

              



13 

14 

15 

16 

17 

18 

19 

20 

21 

  

    <div class="container"> 

        @if(Session::has('message')) 

            <p class="alert">{{ Session::get('message') }}</p> 

        @endif 

    </div> 

  

    </body> 

To display the flash message, I've first used a Blade if  statement to check if we have 

a flash message to display. Our flash message will be available in the Session 

under message . So we can use the Session::has()  method to check for that 

message. If that evaluates to true, we create a paragraph with the Twitter bootstrap 

class of alert  and we call the Session::get()  method to display the message's 

value. 

Now lastly, at least for our layout file, let's echo out a $content  variable, right after our 

flash message. This will allow us to tell our controller to use this layout file, and our 

views will be displayed in place of this $content  variable, right here in the layout: 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

<body> 

  

    <div class="navbar navbar-fixed-top"> 

        <div class="navbar-inner"> 

            <div class="container"> 

                <ul class="nav">   

                    <li>{{ HTML::link('users/register', 'Register') }}</li>    

                    <li>{{ HTML::link('users/login', 'Login') }}</li>    

                </ul>   

            </div> 

        </div> 



11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

    </div>  

              

  

    <div class="container"> 

        @if(Session::has('message')) 

            <p class="alert">{{ Session::get('message') }}</p> 

        @endif 

  

        {{ $content }} 

    </div> 

  

    </body> 

Custom Styling 

Now that we have our layout complete, we just need to add a few small custom CSS 

rules to our main.css  file to customize our layout a little bit more. Go ahead and add in 

the following bit of CSS, it's pretty self explanatory: 

1 

2 

3 

4 

5 

6 

7 

8 

body { 

    padding-top: 40px; 

} 

  

.form-signup, .form-signin { 

    width: 400px; 

    margin: 0 auto; 

} 



I added just a small amount of padding to the top of the body  tag in order to prevent 

our navbar from overlapping our main content. Then I target the Bootstrap's .form-

signup  and .form-signin  classes, which we'll be applying to our register and login 

forms in order to set their width and center them on the page. 

Creating the Register Page 

It's now time to start building the first part of our authentication application and that is 

our Register page. 

The Users Controller 

We'll start by creating a new UsersController  within our app/controllers  folder 

and in it, we define our UsersController  class: 

1 

2 

3 

4 

5 

6 

<?php 

  

class UsersController extends BaseController { 

  

} 

?> 

Next, let's tell this controller to use our main.blade.php  layout. At the top of our 

controller set the $layout  property: 

1 

2 

3 

4 

5 

6 

<?php 

  

class UsersController extends BaseController { 

    protected $layout = "layouts.main"; 

} 

?> 



Now within our UsersController , we need an action for our register page. I named 

my action getRegister : 

1 

2 

3 

public function getRegister() { 

    $this->layout->content = View::make('users.register'); 

} 

Here we just set the content  layout property (this is the $content  variable we echo'd 

out in our layout file) to display a users.register  view file. 

The Users Controller Routes 

With our controller created next we need to setup the routes for all of the actions we 

might create within our controller. Inside of our app/routes.php  file let's first remove 

the default /  route and then add in the following code to create 

our UsersController  routes: 

1 Route::controller('users', 'UsersController'); 

Now anytime that we create a new action, it will be available using a URI in the following 

format: /users/actionName . For example, we have a getRegister  action, we can 

access this using the following URI: /users/register . 

Note that we don't include the "get" part of the action name in the URI, "get" is just the 

HTTP verb that the action responds to. 

Creating the Register View 

Inside of app/views  create a new folder named users . This will hold all of 

our UsersController 's view files. Inside the users  folder create a new file 

named register.blade.php  and place the following code inside of it: 

01 

02 

03 

{{ Form::open(array('url'=>'users/create', 'class'=>'form-signup')) }} 

    <h2 class="form-signup-heading">Please Register</h2> 

  

    <ul> 



04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

        @foreach($errors->all() as $error) 

            <li>{{ $error }}</li> 

        @endforeach 

    </ul> 

  

    {{ Form::text('firstname', null,  

    array('class'=>'input-block-level', 'placeholder'=>'First Name')) }} 

    {{ Form::text('lastname', null,  

    array('class'=>'input-block-level', 'placeholder'=>'Last Name')) }} 

    {{ Form::text('email', null,  

    array('class'=>'input-block-level', 'placeholder'=>'Email Address')) }} 

    {{ Form::password('password',  

    array('class'=>'input-block-level', 'placeholder'=>'Password')) }} 

    {{ Form::password('password_confirmation',  

    array('class'=>'input-block-level',  

    'placeholder'=>'Confirm Password')) }} 

  

    {{ Form::submit('Register', array('class'=>'btn btn-large btn-primary btn-block'))}} 

{{ Form::close() }} 

Here we use the Form  class to create our register form. First we call 

the open() method, passing in an array of options. We tell the form to submit to a URI 

of users/create  by setting the url  key. This URI will be used to process the 

registration of the user. We'll handle this next. After setting the url  we then give the 

form a class of form-signup . 

After opening the form, we just have an h2  heading with the .form-signup-

heading class. 

Next, we use a @foreach  loop, looping over all of the form validation error messages 

and displaying each $error  in the unordered list. 



After the form validation error messages, we then we create several form input fields, 

each with a class of input-block-level  and a placeholder value. We have inputs for 

the firstname, lastname, email, password, and password confirmation fields. The 

second argument to the text()  method is set to null , since we're using 

a placeholder , we don't need to set the input fields value attribute, so I just set it 

to null  in this case. 

After the input fields, we then create our submit button and apply several different 

classes to it so the Twitter bootstrap handles the styling for us. 

Lastly, we just close the form using the close()  method. 

Make sure to start up your server, switch to your favorite browser, and if we browse 

to http://localhost:8000/users/register  you should see your register page: 



 
 

Processing the Register Form Submission 

Now if you tried filling out the register form's fields and hitting the Register button you 

would have been greeted with a NotFoundHttpException , and this is because we 

have no route that matches the users/create  URI, because we do not have an action 

to process the form submission. So that's our next step! 

Creating a postCreate  Action 

Inside of your UsersController  let's create another action named postCreate : 

1 

2 

public function postCreate() { 

          



3 } 

Now this action needs to handle processing the form submission by validating the data 

and either displaying validation error messages or it should create the new user, 

hashing the user's password, and saving the user into the database. 

Form Validation 

Let's start with validating the form submission's data. We first need to create our 

validation rules that we'll validate the form data against. I prefer storing my validation 

rules in my model as that's the convention I'm used to, from working with other 

frameworks. By default, Laravel ships with a User.php  model already created for you. 

Make sure you don't delete this User model or remove any of the preexisting code, as it 

contains new code that is required for Laravel 4's authentication to work correctly. Your 

User model must implement UserInterface  and RemindableInterface  as well as 

implement the getAuthIdentifier()  and getAuthPassword()  methods. 

Under app/models  open up that User.php  file and at the top, add in the following 

code: 

1 

2 

3 

4 

5 

6 

7 

public static $rules = array( 

    'firstname'=>'required|alpha|min:2', 

    'lastname'=>'required|alpha|min:2', 

    'email'=>'required|email|unique:users', 

    'password'=>'required|alpha_num|between:6,12|confirmed', 

    'password_confirmation'=>'required|alpha_num|between:6,12' 

    ); 

Here I'm validating the firstname  and lastname  fields to ensure they are present, 

only contain alpha characters, and that they are at least two characters in length. Next, I 

validate the email  field to ensure that it's present, that it is a valid email address, and 

that it is unique to the users table, as we don't want to have duplicate email addresses 

for our users. Lastly, I validate the password  and password_confirmation  fields. I 

ensure they are both present, contain only alpha-numeric characters and that they are 



between six and twelve characters in length. Additionally, notice 

the confirmed  validation rule, this makes sure that the password  field is exactly the 

same as the matching password_confirmation  field, to ensure users have entered in 

the correct password. 

Now that we have our validation rules, we can use these in our UsersController  to 

validate the form submission. In your UsersController 's postCreate  action, let's 

start by checking if the data passes validation, add in the following code: 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

public function postCreate() { 

    $validator = Validator::make(Input::all(), User::$rules); 

  

    if ($validator->passes()) { 

        // validation has passed, save user in DB 

    } else { 

        // validation has failed, display error messages     

    } 

} 

} 

We start by creating a validator object named $validator  by calling 

the User::validate()  method. This accepts the two arguments, the submitted form 

input that should be validated and the validation rules that the data should be validated 

against. We can grab the submitted form data by calling the Input::all() method and 

we pass that in as the first argument. We can get our validation rules that we created in 

our User  model by accessing the static User::$rules  property and passing that in as 

the second argument. 

Once we've created our validator object, we call its passes()  method. This will return 

either true  or false  and we use this within an if  statement to check whether our 

data has passed validation. 



Within our if  statement, if the validation has passed, add in the following code: 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

if ($validator->passes()) { 

    $user = new User; 

    $user->firstname = Input::get('firstname'); 

    $user->lastname = Input::get('lastname'); 

    $user->email = Input::get('email'); 

    $user->password = Hash::make(Input::get('password')); 

    $user->save(); 

  

    return Redirect::to('users/login')->with('message',  

    'Thanks for registering!'); 

} else { 

    // validation has failed, display error messages     

} 

As long as the data that the user submits has passed validation, we create a new 

instance of our User model: new User;  storing it into a $user  variable. We can then 

use the $user  object and set each of the user's properties using the submitted form 

data. We can grab the submitted data individually using 

the Input::get('fieldName')  method. Where fieldName  is the field's value you 

want to retrieve. Here we've grabbed the firstname, lastname, and email fields to use for 

our new user. We also grabbed the password field's value, but we don't just want to 

store the password in the database as plain text, so we use the Hash::make() method 

to hash the submitted password for us before saving it. Lastly, we save the user into the 

database by calling the $user  object's save()  method. 

After creating the new user, we then redirect the user to the login page (we'll create the 

login page in a few moments) using the Redirect::to()  method. This just takes in the 

URI of where you'd like to redirect to. We also chain on the with()  method call in 

order to give the user a flash message letting them know that their registration was 

successful. 



Now if the validation does not pass, we need to redisplay the register page, along with 

some validation error messages, with the old input, so the user can correct their 

mistakes. Within your else  statement, add in the following code: 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

if ($validator->passes()) { 

    $user = new User; 

    $user->firstname = Input::get('firstname'); 

    $user->lastname = Input::get('lastname'); 

    $user->email = Input::get('email'); 

    $user->password = Hash::make(Input::get('password')); 

    $user->save(); 

  

    return Redirect::to('users/login')->with('message',  

    'Thanks for registering!'); 

} else { 

    return Redirect::to('users/register')->with('message',  

    'The following errors occurred')->withErrors($validator)->withInput(); 

} 

Here we just redirect the user back to the register page with a flash message letting 

them know some errors have occurred. We make sure to display the validation error 

messages by calling the withErrors($validator)  method and passing in 

our $validator  object to it. Finally, we call the withInput()  method so the form 

remembers what the user originally typed in and that will make it nice and easy for the 

user to correct the errors. 

Adding In the CSRF Before Filter 

Now we need to make sure to protect our POST actions from CSRF attacks by setting 

the CSRF before filter within our UsersController 's constructor method. At the top of 

your UsersController  add in the following code: 

1 

2 

public function __construct() { 

    $this->beforeFilter('csrf', array('on'=>'post')); 



3 } 

Within our constructor, we call the beforeFilter()  method and pass in the 

string csrf , as the first argument. csrf  is the filter that we want to apply to our 

actions. Then we pass in an array as the second argument and tell it to only apply this 

filter on POST requests. By doing this, our forms will pass along a CSRF token 

whenever they are submitted. This CSRF before filter will ensure that all POST requests 

to our app contain this token, giving us confidence that POST requests are not being 

issued to our application from other external sources. 

Creating the Login Page 

Before you run off and try out your register page, we first need to create the Login page 

so that when our register form submission is successful, we don't get an error. 

Remember, if the form validation passes, we save the user and redirect them to the 

login page. We currently don't have this login page though, so let's create it! 

Still inside of your UsersController , create a new action named getLogin  and place 

in the following code: 

1 

2 

3 

public function getLogin() { 

    $this->layout->content = View::make('users.login'); 

} 

This will display a users.login  view file. We now need to create that view file. 

Under app/views/users  create a new file named login.blade.php  and add in the 

following code: 

1 

2 

3 

4 

{{ Form::open(array('url'=>'users/signin', 'class'=>'form-signin')) }} 

    <h2 class="form-signin-heading">Please Login</h2> 

  

    {{ Form::text('email', null, array('class'=>'input-block-level',  

    'placeholder'=>'Email Address')) }} 



5 

6 

7 

8 

    {{ Form::password('password', array('class'=>'input-block-level',  

    'placeholder'=>'Password')) }} 

  

    {{ Form::submit('Login',  

    array('class'=>'btn btn-large btn-primary btn-block'))}} 

{{ Form::close() }} 

  

This code is very similar to the code we used in our register  view, so I'll simplify the 

explanation this time to only what is different. For this form, we have it submit to 

a users/signin  URI and we changed the form's class to .form-signin . The h2 has 

been changed to say "Please Login" and its class was also changed to .form-signin-

heading . Next, we have two form fields so the user can enter in their email and 

password, and then finally our submit button which just says "Login". 

Let's Register a New User! 

We're finally at a point to where we can try out our registration form. Of course, the login 

functionality doesn't work just yet, but we'll get to that soon enough. We only needed the 

login page to exist so that our register page would work properly. Make sure your server 

is still running, switch into your browser, and 

visit http://localhost:8000/users/register . Try entering in some invalid user data 

to test out the form validation error messages. Here's what my page looks like with an 

invalid user: 



 
 

Now try registering with valid user data. This time we get redirected to our login page 

along with our success message, excellent! 



 
 

Logging In 

So we've successfully registered a new user and we have a login page, but we still can't 

login. We now need to create the postSignin  action for our users/signin URI, that 

our login form submits to. Let's go back into our UsersController  and create a new 

action named postSignin : 

1 

2 

3 

public function postSignin() { 

              

} 

Now let's log the user in, using the submitted data from the login form. Add the following 

code into your postSignin()  action: 



1 

2 

3 

4 

5 

6 

7 

if (Auth::attempt(array('email'=>Input::get('email'), 'password'=>Input::get('password')))) { 

    return Redirect::to('users/dashboard')->with('message', 'You are now logged in!'); 

} else { 

    return Redirect::to('users/login') 

        ->with('message', 'Your username/password combination was incorrect') 

        ->withInput(); 

} 

Here we attempt to log the user in, using the Auth::attempt()  method. We simply 

pass in an array containing the user's email and password that they submitted from the 

login form. This method will return either true  or false  if the user's credentials 

validate. So we can use this attempt()  method within an if  statement. If the user 

was logged in, we just redirect them to a dashboard  view page and give them a 

success message. Otherwise, the user's credentials did not validate and in that case we 

redirect them back to the login page, with an error message, and display the old input 

so the user can try again. 

Creating the Dashboard 

Now before you attempt to login with your newly registered user, we need to create that 

dashboard page and protect it from unauthorized, non logged in users. The dashboard 

page should only be accessible to those users who have registered and logged in to our 

application. Otherwise, if a non authorized user attempts to visit the dashboard we'll 

redirect them and request that they log in first. 

While still inside of your UsersController  let's create a new action 

named getDashboard : 

1 

2 

3 

public function getDashboard() { 

      

} 

And inside of this action we'll just display a users.dashboard  view file: 



1 

2 

3 

public function getDashboard() { 

    $this->layout->content = View::make('users.dashboard'); 

} 

Next, we need to protect it from unauthorized users by using the auth  before filter. In 

our UsersController 's constructor, add in the following code: 

1 

2 

3 

4 

public function __construct() { 

    $this->beforeFilter('csrf', array('on'=>'post')); 

    $this->beforeFilter('auth', array('only'=>array('getDashboard'))); 

} 

This will use the auth  filter, which checks if the current user is logged in. If the user is 

not logged in, they get redirected to the login page, essentially denying the user access. 

Notice that I'm also passing in an array as a second argument, by setting the only  key, 

I can tell this before filter to only apply it to the provided actions. In this case, I'm saying 

to protect only the getDashboard  action. 

Customizing Filters 

By default the auth  filter will redirect users to a /login  URI, this does not work for 

our application though. We need to modify this filter so that it redirects to 

a users/login  URI instead, otherwise get an error. Open up app/filters.php  and in 

the Authentication Filters section, change the auth filter to redirect to users/login , 

like this: 

01 

02 

03 

04 

05 

06 

07 

/* 

|-------------------------------------------------------------------------- 

| Authentication Filters 

|-------------------------------------------------------------------------- 

| 

| The following filters are used to verify that the user of the current 

| session is logged into this application. The "basic" filter easily 

| integrates HTTP Basic authentication for quick, simple checking. 



08 

09 

10 

11 

12 

13 

14 

15 

| 

*/ 

  

Route::filter('auth', function() 

{ 

    if (Auth::guest()) return Redirect::guest('users/login'); 

}); 

Creating the Dashboard View 

Before we can log users into our application we need to create that dashboard  view 

file. Under app/views/users  create a new file named dashboard.blade.php  and 

insert the following snippet of code: 

1 

2 

3 

<h1>Dashboard</h1> 

  

<p>Welcome to your Dashboard. You rock!</p> 

Here I'm displaying a very simple paragraph to let the user know they are now in their 

Dashboard. 

Let's Login! 

We should now be able to login. Browse to http://localhost:8000/users/login , 

enter in your user's credentials, and give it a try. 



 
 

Success! 

Displaying the Appropriate Navigation Links 

Ok, we can now register and login to our application, very cool! But we have a little quirk 

here, if you look at our navigation menu, even though we're logged in, you can see that 

the register and login buttons are still viewable. Ideally, we want these to only display 

when the user is not logged in. Once the user does login though, we want to display a 

logout link. To make this change, let's open up our main.blade.php file again. Here's 

what our navbar code looks like at the moment: 

01 

02 

<div class="navbar navbar-fixed-top"> 

    <div class="navbar-inner"> 



03 

04 

05 

06 

07 

08 

09 

10 

        <div class="container"> 

            <ul class="nav">   

                <li>{{ HTML::link('users/register', 'Register') }}</li>    

                <li>{{ HTML::link('users/login', 'Login') }}</li>    

            </ul>   

        </div> 

    </div> 

</div> 

Let's modify this slightly, replacing our original navbar code, with the following: 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

<div class="navbar navbar-fixed-top"> 

    <div class="navbar-inner"> 

        <div class="container"> 

            <ul class="nav">   

                @if(!Auth::check()) 

                    <li>{{ HTML::link('users/register', 'Register') }}</li>    

                    <li>{{ HTML::link('users/login', 'Login') }}</li>    

                @else 

                    <li>{{ HTML::link('users/logout', 'logout') }}</li> 

                @endif 

            </ul>   

        </div> 

    </div> 

</div> 

All I've done is wrapped our li  tags for our navbar in an if  statement to check if the 

user is not logged in, using the !Auth::check()  method. This method returns true  if 

the user is logged in, otherwise, false . So if the user is not logged in, we display the 

register and login links, otherwise, the user is logged in and we display a logout link, 

instead. 



 
 

Adv ertisement 

Logging Out 

Now that our navbar displays the appropriate links, based on the user's logged in status, 

let's wrap up this application by creating the getLogout  action, to actually log the user 

out. Within your UsersController  create a new action named getLogout : 

1 

2 

3 

public function getLogout() { 

      

} 

 



Now add in the following snippet of code to log the user out: 

1 

2 

3 

4 

public function getLogout() { 

    Auth::logout(); 

    return Redirect::to('users/login')->with('message', 'Your are now logged out!'); 

} 

Here we call the Auth::logout()  method, which handles logging the user out for us. 

Afterwards, we redirect the user back to the login page and give them a flash message 

letting them know that they have been logged out. 

 
 



Conclusion 

And that concludes this Laravel 4 Authentication tutorial. I hope you've found this helpful 

in setting up auth for your Laravel apps. If you have any problems or questions, feel free 

to ask in the comments and I'll try my best to help you out. You can checkout 

the complete source code for the small demo app that we built throughout this tutorial 

on Github. Thanks for reading. 

 

https://github.com/tutsplus/laravel-4-authentication

